Release of hydrogen peroxide and antioxidants by the coral <i>Stylophora pistillata</i> to its external <i>milieu</i>

Author:

Armoza-Zvuloni R.,Shaked Y.

Abstract

Abstract. Hydrogen peroxide (H2O2), a common reactive oxygen species, plays multiple roles in coral health and disease. Elevated H2O2 production by the symbiotic algae during stress may result in symbiosis breakdown and bleaching of the coral. We have recently reported that various Red Sea corals release H2O2 and antioxidants to their external milieu, and can influence the H2O2 dynamics in the reef. Here, we present a laboratory characterization of H2O2 and antioxidant activity release kinetics by intact, non-stressed Stylophora pistillata. Experimenting with bleached and non-bleached corals and different stirring speeds, we explored the sources and modes of H2O2 and antioxidant release. Since H2O2 is produced and degraded simultaneously, we developed a methodology for resolving the actual H2O2 concentrations released by the corals. H2O2 and antioxidant activity steadily increased in the water surrounding the coral over short periods of 1–2 h. Over longer periods of 5–7 h, the antioxidant activity kept increasing with time, while H2O2 concentrations were stabilized at ~ 1 μM by 1–3 h, and then gradually declined. Solving for H2O2 release, corals were found to release H2O2 at increasing rates over 2–4 h, and then to slow down and stop by 5–7 h. Stirring was shown to induce the release of H2O2, possibly since the flow reduces the thickness of the diffusive boundary layer of the coral, and thus increases H2O2 mass flux. Antioxidant activity was released at similar rates by bleached and non-bleached corals, suggesting that the antioxidants did not originate from the symbiotic algae. H2O2, however, was not released from bleached corals, implying that the symbiotic algae are the source of the released H2O2. The observed flow-induced H2O2 release may aid corals in removing some of the internal H2O2 produced by their symbiotic algae, and may possibly assist in preventing coral bleaching under conditions of elevated temperature and irradiance.

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3