Deoxygenation lowers the thermal threshold of coral bleaching

Author:

Alderdice Rachel,Perna Gabriela,Cárdenas Anny,Hume Benjamin C. C.,Wolf Martin,Kühl Michael,Pernice Mathieu,Suggett David J.,Voolstra Christian R.

Abstract

AbstractExposure to deoxygenation from climate warming and pollution is emerging as a contributing factor of coral bleaching and mortality. However, the combined effects of heating and deoxygenation on bleaching susceptibility remain unknown. Here, we employed short-term thermal stress assays to show that deoxygenated seawater can lower the thermal limit of anAcroporacoral by as much as 1 °C or 0.4 °C based on bleaching index scores or dark-acclimated photosynthetic efficiencies, respectively. Using RNA-Seq, we show similar stress responses to heat with and without deoxygenated seawater, both activating putative key genes of the hypoxia-inducible factor response system indicative of cellular hypoxia. We also detect distinct deoxygenation responses, including a disruption of O2-dependent photo-reception/-protection, redox status, and activation of an immune response prior to the onset of bleaching. Thus, corals are even more vulnerable when faced with heat stress in deoxygenated waters. This highlights the need to integrate dissolved O2measurements into global monitoring programs of coral reefs.

Funder

Australian Research Council

Deutsche Forschungsgemeinschaft

Universität Konstanz

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3