Abstract
AbstractImage based Localization (IbL) uses both Structure from Motion (SfM) and Simultaneous Localization and Mapping (SLAM) data for accurate pose estimation. However, under conditions where there is a large perspective difference between the SfM images and SLAM keyframes, the SfM-SLAM co-visibility graph becomes sparse. As a result, the scale drift can increase especially when using monocular SLAM as part of the IbL framework. The drift rarely gets corrected at loop closure due to its large magnitude. We propose a split affine transformation approach that uses SfM-SLAM information along with Sim(3) optimization to minimize the scale drift. Experiments are performed using an image dataset collected in a campus environment with different trajectories, showing the improvement in scale drift correction with the proposed method. The SLAM data was collected close to plainly textured structures like buildings while SfM images were captured from a larger distance from the building facade which leads to a challenging navigation scenario in the context of IbL. Localizing mobile platforms moving close to buildings is an example of such a case. The paper positively impacts the widespread use of small autonomous robotic platforms, which is to perform an accurate outdoor localization under urban conditions using only a monocular camera.
Funder
University of New South Wales
Publisher
Springer Science and Business Media LLC
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献