Formal design, verification and implementation of robotic controller software via RoboChart and RoboTool

Author:

Li WeiORCID,Ribeiro PedroORCID,Miyazawa AlvaroORCID,Redpath Richard,Cavalcanti AnaORCID,Alden KieranORCID,Woodcock JimORCID,Timmis JonORCID

Abstract

AbstractCurrent practice in simulation and implementation of robot controllers is usually undertaken with guidance from high-level design diagrams and pseudocode. Thus, no rigorous connection between the design and the development of a robot controller is established. This paper presents a framework for designing robotic controllers with support for automatic generation of executable code and automatic property checking. A state-machine based notation, RoboChart, and a tool (RoboTool) that implements the automatic generation of code and mathematical models from the designed controllers are presented. We demonstrate the application of RoboChart and its related tool through a case study of a robot performing an exploration task. The automatically generated code is platform independent and is used in both simulation and two different physical robotic platforms. Properties are formally checked against the mathematical models generated by RoboTool, and further validated in the actual simulations and physical experiments. The tool not only provides engineers with a way of designing robotic controllers formally but also paves the way for correct implementation of robotic systems.

Funder

Engineering and Physical Sciences Research Council

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3