Architectural modelling for robotics: RoboArch and the CorteX example

Author:

Barnett Will,Cavalcanti Ana,Miyazawa Alvaro

Abstract

The need for robotic systems to be verified grows as robots are increasingly used in complex applications with safety implications. Model-driven engineering and domain-specific languages (DSLs) have proven useful in the development of complex systems. RoboChart is a DSL for modelling robot software controllers using state machines and a simple component model. It is distinctive in that it has a formal semantics and support for automated verification. Our work enriches RoboChart with support for modelling architectures and architectural patterns used in the robotics domain. Support is in the shape of an additional DSL, RoboArch, whose primitive concepts encapsulate the notion of a layered architecture and architectural patterns for use in the design of the layers that are only informally described in the literature. A RoboArch model can be used to generate automatically a sketch of a RoboChart model, and the rules for automatic generation define a semantics for RoboArch. Additional patterns can be formalised by extending RoboArch. In this paper, we present RoboArch, and give a perspective of how it can be used in conjunction with CorteX, a software framework developed for the nuclear industry.

Publisher

Frontiers Media SA

Subject

Artificial Intelligence,Computer Science Applications

Reference56 articles.

1. An architecture for autonomy;Alami;Int. J. Rob. Res.,1998

2. Nasrem – The NASA/NBS standard reference model for telerobot control system architecture;Albus,1989

3. An architectural framework for modeling teleoperated service robots;Álvarez;Robotica,2006

4. A software platform for component based rt-system development: Openrtm-aist;Ando,2008

5. Motor schema — Based mobile robot navigation;Arkin;Int. J. Rob. Res.,1989

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3