A novel framework for generalizing dynamic movement primitives under kinematic constraints

Author:

Sidiropoulos AntonisORCID,Papageorgiou DimitriosORCID,Doulgeri ZoeORCID

Abstract

AbstractIn this work, we propose a novel framework for generalizing a desired trajectory pattern, encoded using Dynamic Movement Primitives (DMP), subject to kinematic constraints. DMP have been extensively used in robotics for encoding and reproducing kinematic behaviours, thanks to their generalization, stability and robustness properties. However, incorporating kinematic constraints has not yet been fully addressed. To this end, we design an optimization framework, based on the DMP formulation from our previous work, for generalizing trajectory patterns, encoded with DMP subject to kinematic constraints, considering also time-varying target and time duration, via-point and obstacle constraints. Simulations highlight these properties and comparisons are drawn with other approaches for enforcing constraints on DMP. The usefulness and applicability of the proposed framework is showcased in experimental scenarios, including a handover, where the target and time duration vary, and placing scenarios, where obstacles are dynamically introduced in the scene.

Funder

Aristotle University of Thessaloniki

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3