Abstract
AbstractVarious experimental approaches of the wet nanoscale treatment have been proposed to account for features of the InAs, InSb and GaAs, GaSb semiconductor dissolution process in the (NH4)2Cr2O7–HBr–EG etching solution. Etching kinetics data showed that a crystal dissolution has diffusion-determined nature. The lowering of the solvent concentration from 80 to 0 vol.% in the solution was accompanied by a significant increase in the semiconductor etching speed. Depending on the solution composition, we have studied two types of crystal surface morphology, polished and passivated by the film, which was formed after chemical-dynamic (CDP) and/or chemical-mechanic polishing (CMP) in the solution, saturated by solvent and by oxidant, accordingly. It was found that in the polished etchants both CDP and CMP procedures lead to the formation of the mirror-like and super-smooth surface with nanoscale roughness less than 1 nm. The obtained results of surface state indicate that the (NH4)2Cr2O7–HBr–EG etchants could be used successfully for controllable CDP and CMP treatment of III–V semiconductors and formation of super-smooth surface.
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,Cell Biology,Physical and Theoretical Chemistry,Materials Science (miscellaneous),Atomic and Molecular Physics, and Optics,Biotechnology
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献