Modulating p-type doping of two dimensional material palladium diselenide
-
Published:2023-11-24
Issue:
Volume:
Page:
-
ISSN:1998-0124
-
Container-title:Nano Research
-
language:en
-
Short-container-title:Nano Res.
Author:
Yang Jiali,Liu Yu,Wang En-Yang,Pang Jinbo,Huang Shirong,Gemming Thomas,Bi Jinshun,Bachmatiuk Alicja,Jia Hao,Hu Shu-Xian,Jiang Chongyun,Liu Hong,Cuniberti Gianaurelio,Zhou Weijia,Rümmeli Mark H.
Abstract
AbstractThe van der Waals heterostructures have evolved as novel materials for complementing the Si-based semiconductor technologies. Group-10 noble metal dichalcogenides (e.g., PtS2, PtSe2, PdS2, and PdSe2) have been listed into two-dimensional (2D) materials toolkit to assemble van der Waals heterostructures. Among them, PdSe2 demonstrates advantages of high stability in air, high mobility, and wide tunable bandgap. However, the regulation of p-type doping of PdSe2 remains unsolved problem prior to fabricating p–n junction as a fundamental platform of semiconductor physics. Besides, a quantitative method for the controllable doping of PdSe2 is yet to be reported. In this study, the doping level of PdSe2 was correlated with the concentration of Lewis acids, for example, SnCl4, used for soaking. Considering the transfer characteristics, the threshold voltage (the gate voltage corresponding to the minimum drain current) increased after SnCl4 soaking treatment. PdSe2 transistors were soaked in SnCl4 solutions with five different concentrations. The threshold voltages from the as-obtained transfer curves were extracted for linear fitting to the threshold voltage versus doping concentration correlation equation. This study provides in-depth insights into the controllable p-type doping of PdSe2. It may also push forward the research of the regulation of conductivity behaviors of 2D materials.
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,General Materials Science,Condensed Matter Physics,Atomic and Molecular Physics, and Optics
Reference162 articles.
1. Jiang, S. W.; Li, L. Z.; Wang, Z. F.; Shan, J.; Mak, K. F. Spin tunnel field-effect transistors based on two-dimensional van der Waals heterostructures. Nat. Electron. 2019, 2, 159–163. 2. Zhang, Z.; Lin, P.; Liao, Q. L.; Kang, Z.; Si, H. N.; Zhang, Y. Graphene-based mixed-dimensional van der Waals heterostructures for advanced optoelectronics. Adv. Mater. 2019, 31, 1806411. 3. Zhang, S. Y.; Hill, H. M.; Moudgil, K.; Richter, C. A.; Hight Walker, A. R.; Barlow, S.; Marder, S. R.; Hacker, C. A.; Pookpanratana, S. J. Controllable, wide-ranging n-doping and p-doping of monolayer group 6 transition-metal disulfides and diselenides. Adv. Mater. 2018, 30, 1802991. 4. Liang, Q. J.; Zhang, Q.; Zhao, X. X.; Liu, M. Z.; Wee, A. T. S. Defect engineering of two-dimensional transition-metal dichalcogenides: Applications, challenges, and opportunities. ACS Nano 2021, 15, 2165–2181. 5. Zheng, Y. J.; Chen, Y. F.; Huang, Y. L.; Gogoi, P. K.; Li, M. Y.; Li, L. J.; Trevisanutto, P. E.; Wang, Q. X.; Pennycook, S. J.; Wee, A. T. S. et al. Point defects and localized excitons in 2D WSe2. ACS Nano 2019, 13, 6050–6059.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|