Author:
Karakas Gizem,Kocaman Sultan,Gokceoglu Candan
Abstract
AbstractPreparation of accurate and up-to-date susceptibility maps at the regional scale is mandatory for disaster mitigation, site selection, and planning in areas prone to multiple natural hazards. In this study, we proposed a novel multi-hazard susceptibility assessment approach that combines expert-based and supervised machine learning methods for landslide, flood, and earthquake hazard assessments for a basin in Elazig Province, Türkiye. To produce the landslide susceptibility map, an ensemble machine learning algorithm, random forest, was chosen because of its known performance in similar studies. The modified analytical hierarchical process method was used to produce the flood susceptibility map by using factor scores that were defined specifically for the area in the study. The seismic hazard was assessed using ground motion parameters based on Arias intensity values. The univariate maps were synthesized with a Mamdani fuzzy inference system using membership functions designated by expert. The results show that the random forest provided an overall accuracy of 92.3% for landslide susceptibility mapping. Of the study area, 41.24% were found prone to multi-hazards (probability value > 50%), but the southern parts of the study area are more susceptible. The proposed model is suitable for multi-hazard susceptibility assessment at a regional scale although expert intervention may be required for optimizing the algorithms.
Publisher
Springer Science and Business Media LLC
Subject
Management, Monitoring, Policy and Law,Safety Research,Geography, Planning and Development,Global and Planetary Change
Reference106 articles.
1. AFAD (Disaster and Emergency Management Presidency of Türkiye). 2020. Report on natural event statistics in Türkiye. Afet Yönetimi Kapsamında 2019 Yılına Bakış ve Doğa Kaynaklı Olay İstatistikleri. https://www.afad.gov.tr/kurumlar/afad.gov.tr/e_Kutuphane/KurumsalRaporlar/Afet_Istatistikleri_2020_web.pdf. Accessed 4 Feb 2023 (in Turkish).
2. Akinci, H., and A.Y. Ozalp. 2021. Landslide susceptibility mapping and hazard assessment in Artvin (Turkey) using frequency ratio and modified information value model. Acta Geophysica 69(3): 725–745.
3. Aksha, S.K., L.M. Resler, L. Juran, and L.W. Carstensen. 2020. A geospatial analysis of multi-hazard risk in Dharan, Nepal. Geomatics, Natural Hazards and Risk 11(1): 88–111.
4. Alpyurur, M., and M.A. Lav. 2022. An assessment of probabilistic seismic hazard for the cities in Southwest Turkey using historical and instrumental earthquake catalogs. Natural Hazards 114(1): 335–365.
5. Arca, D., M. Hacısalihoğlu, and S.H. Kutoğlu. 2020. Producing forest fire susceptibility map via multi-criteria decision analysis and frequency ratio methods. Natural Hazards 104(1): 73–89.
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献