Hazard Susceptibility Mapping with Machine and Deep Learning: A Literature Review

Author:

Pugliese Viloria Angelly de Jesus1ORCID,Folini Andrea1,Carrion Daniela1ORCID,Brovelli Maria Antonia1ORCID

Affiliation:

1. Department of Civil and Environmental Engineering, Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milan, Italy

Abstract

With the increase in climate-change-related hazardous events alongside population concentration in urban centres, it is important to provide resilient cities with tools for understanding and eventually preparing for such events. Machine learning (ML) and deep learning (DL) techniques have increasingly been employed to model susceptibility of hazardous events. This study consists of a systematic review of the ML/DL techniques applied to model the susceptibility of air pollution, urban heat islands, floods, and landslides, with the aim of providing a comprehensive source of reference both for techniques and modelling approaches. A total of 1454 articles published between 2020 and 2023 were systematically selected from the Scopus and Web of Science search engines based on search queries and selection criteria. ML/DL techniques were extracted from the selected articles and categorised using ad hoc classification. Consequently, a general approach for modelling the susceptibility of hazardous events was consolidated, covering the data preprocessing, feature selection, modelling, model interpretation, and susceptibility map validation, along with examples of related global/continental data. The most frequently employed techniques across various hazards include random forest, artificial neural networks, and support vector machines. This review also provides, per hazard, the definition, data requirements, and insights into the ML/DL techniques used, including examples of both state-of-the-art and novel modelling approaches.

Publisher

MDPI AG

Reference229 articles.

1. IPCC (2023). IPCC, 2023: Summary for Policymakers. Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, IPCC.

2. Global assessment of heat wave magnitudes from 1901 to 2010 and implications for the river discharge of the Alps;Zampieri;Sci. Total Environ.,2016

3. Munich Re (2022). Hurricanes, Cold Waves, Tornadoes: Weather Disasters in USA Dominate Natural Disaster Losses in 2021, Munich Re.

4. Asian Development Bank (2013). Moving from Risk to Resilience: Sustainable Urban Development in the Pacific, Asian Development Bank.

5. Recommendations for the quantitative analysis of landslide risk;Corominas;Bull. Eng. Geol. Environ.,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3