Abstract
AbstractIn this paper, a framework for the simulation of crack propagation in brittle and ductile materials is proposed. The framework is derived by extending the eigenerosion approach of Pandolfi and Ortiz (Int J Numer Methods Eng 92(8):694–714, 2012. 10.1002/nme.4352) to finite strains and by connecting it with a generalized energy-based, Griffith-type failure criterion for ductile fracture. To model the elasto-plastic response, a classical finite strain formulation is extended by viscous regularization to account for the shear band localization prior to fracture. The compression–tension asymmetry, which becomes particularly important during crack propagation under cyclic loading, is incorporated by splitting the strain energy density into a tensile and compression part. In a comparative study based on benchmark problems, it is shown that the unified approach is indeed able to represent brittle and ductile fracture at finite strains and to ensure converging, mesh-independent solutions. Furthermore, the proposed approach is analyzed for cyclic loading, and it is shown that classical Wöhler curves can be represented.
Funder
deutsche forschungsgemeinschaft
Publisher
Springer Science and Business Media LLC
Reference43 articles.
1. Aldakheel, F.: Mechanics of nonlocal dissipative solids: gradient plasticity and phase field modeling of ductile fracture. Ph.D. thesis, Institut für Mechanik, Universität Stuttgart (2016)
2. Ambati, M., Gerasimov, T., De Lorenzis, L.: Phase-field modeling of ductile fracture. Comput. Mech. 55(5), 1017–1040 (2015). https://doi.org/10.1007/s00466-015-1151-4
3. Balzani, D., Ortiz, M.: Relaxed incremental variational formulation for damage at large strains with application to fiber-reinforced materials and materials with truss-like microstructures. Comput. Methods Appl. Mech. Eng. 92, 551–570 (2012)
4. Barenblatt, G.I.: The mathematical theory of equilibrium cracks in brittle fracture. In: Advances in Applied Mechanics, vol. 7, pp. 55–129. Elsevier (1962). https://doi.org/10.1016/S0065-2156(08)70121-2
5. Belytschko, T., Black, T.: Elastic crack growth in finite elements with minimal remeshing. Int. J. Numer. Methods Eng. 45(5), 601–620 (1999)
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献