Influence of hard phase size and spacing on the fatigue crack propagation in tool steels—Numerical simulation and experimental validation

Author:

Brackmann Lukas1ORCID,Wingender Dennis2,Weber Sebastian1,Balzani Daniel2,Röttger Arne3

Affiliation:

1. Chair of Materials Technology, Institute for Materials Ruhr‐Universität Bochum Bochum Germany

2. Chair of Continuum Mechanics Ruhr‐Universität Bochum Bochum Germany

3. Chair for New Production Technologies and Materials Bergische Universität Wuppertal Solingen Germany

Abstract

AbstractIn this study, the fatigue crack growth rate in four different tool steel microstructures (hot rolled, powdermetallurgically processed, as‐cast, and carbide‐free) is experimentally measured and correlated with hard phase size and spacing, as well as with the roughness of the fracture surface that is created by crack kinking. Numerical simulations of crack growth in carbide‐containing microstructures are conducted and investigated. The results indicate a favorable influence of carbides with a larger size and higher degree of roundness, as they create the largest mean free path between the individual carbides at the same hard phase volume content. This facilitates the formation of a plastic zone in the matrix, which dissipates crack energy and reduces the effective stress intensity. In addition, the effect of crack kinking is increased at larger carbide sizes. Concerning practical application, the results suggest that a high degree of deformation is favorable regarding the fatigue growth resistance of tool steels, and that the use of powder metallurgically (PM) grades with small carbides is discouraged, if the lifetime of a tool is mainly controlled by the crack growth rate and not crack initiation.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3