Multidimensional rank-one convexification of incremental damage models at finite strains

Author:

Balzani D.ORCID,Köhler M.ORCID,Neumeier T.ORCID,Peter M. A.ORCID,Peterseim D.ORCID

Abstract

AbstractThis paper presents computationally feasible rank-one relaxation algorithms for the efficient simulation of a time-incremental damage model with nonconvex incremental stress potentials in multiple spatial dimensions. While the standard model suffers from numerical issues due to the lack of convexity, our experiments showed that the relaxation by rank-one convexification delivering an approximation to the quasiconvex envelope prevents mesh dependence of the solutions of finite element discretizations. By the combination, modification and parallelization of the underlying convexification algorithms, the novel approach becomes computationally feasible. A descent method and a Newton scheme enhanced by step-size control prevent stability issues related to local minima in the energy landscape and the computation of derivatives. Numerical techniques for the construction of continuous derivatives of the approximated rank-one convex envelope are discussed. A series of numerical experiments demonstrates the ability of the computationally relaxed model to capture softening effects and the mesh independence of the computed approximations. An interpretation in terms of microstructural damage evolution is given, based on the rank-one lamination process.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computational Mathematics,Computational Theory and Mathematics,Mechanical Engineering,Ocean Engineering,Computational Mechanics

Reference61 articles.

1. Aschan T, Holy T, Kittisopikul M, and Contributors (2022) Interpolations.jl. Julia Math

2. Bartels S (2004) Linear convergence in the approximation of rank-one convex envelopes. ESAIM Math Model Numer Anal 38(5):811–820

3. Bartels S (2005) Reliable and efficient approximation of polyconvex envelopes. SIAM J Numer Anal 43(1):363–385

4. Springer series in computational mathematics;S Bartels,2015

5. Bazant ZP (1984) Microplane model for strain-controlled inelastic behavior. Mech Mater, pp 45–59

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3