Effect of pH on Rhodomonas salina growth, biochemical composition, and taste, produced in semi-large scale under sunlight conditions

Author:

Latsos ChristosORCID,Wassenaar Eric,Moerdijk Tanja,Coleman Bert,Robbens Johan,van Roy Sandra,Bastiaens Leen,van Houcke Jasper,Timmermans Klaas R.

Abstract

AbstractRhodomonas salina is a microalgal species, belonging to the cryptophytes, and is widely used as aquaculture feed because of its high nutritional profile and phycoerythrin content. This study investigated the effect of pH on the growth, biochemical composition, and taste of R. salina when cultivated on a semi-large scale under natural light conditions. Two tubular photobioreactors (200 L) were used for the cultivation of R. salina with sunlight as the only illumination source. Two different pH setpoints were applied, 7 and 8.5. Optimal temperature and nutrient conditions were applied, according to previous research findings. The results demonstrated that the productivity of R. salina was higher at pH 7, 0.06–0.14 gdry weight L−1 day−1, compared to pH 8.5, 0.03–0.12 gdry weight L−1 day−1. It was found that protein and total fatty acid concentrations were higher in the biomass that was produced at pH 8.5, 33.7% and 12.3% of dry weight, respectively, while at pH 7, the protein content was 31.9% and the total fatty acids 8.8% of dry weight. The phycoerythrin concentration, like protein, was higher at pH 8.5, 2.7% of dry weight, compared to pH 7, 1% of dry weight. The free amino acid and nucleotide profile of R. salina was affected by the pH, resulting in increased equivalent umami concentration at pH 7. For the sensory evaluation, an expert panel on algae flavors evaluated the effect of pH on the taste of R. salina, reporting that the biomass that was produced at pH 7 had more umami flavor than the biomass that was produced at pH 8.5, which was evaluated as more bitter.

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Aquatic Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3