Structural Isomers: Small Change with Big Difference in Anion Storage

Author:

Dai Huichao,Chen Yuan,Cao Yueyue,Fu Manli,Guan Linnan,Zhang Guoqun,Gong Lei,Tang Mi,Fan Kun,Wang Chengliang

Abstract

Abstract Organic electrode materials are promising for batteries. However, the reported organic electrodes are often facing the challenges of low specific capacity, low voltage, poor rate capability and vague charge storage mechanisms, etc. Isomers are good platform to investigate the charge storage mechanisms and enhance the performance of batteries, which, however, have not been focused in batteries. Herein, two isomers are reported for batteries. As a result, the isomer tetrathiafulvalene (TTF) could store two monovalent anions reversibly, deriving an average discharge voltage of 1.05 V and a specific capacity of 220 mAh g−1 at a current density of 2 C. On the other hand, the other isomer tetrathianaphthalene could only reversibly store one monovalent anion and upon further oxidation, it would undergo an irreversible solid-state molecular rearrangement to TTF. The molecular rearrangement was confirmed by electrochemical performances, X-ray diffraction patterns, nuclear magnetic resonance spectra, and 1H detected heteronuclear multiple bond correlation spectra. These results suggested the small structural change could lead to a big difference in anion storage, and we hope this work will stimulate more attention to the structural design for boosting the performance of organic batteries.

Funder

Shanghai Jiao Tong University

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Surfaces, Coatings and Films,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3