Mediating the Local Oxygen-Bridge Interactions of Oxysalt/Perovskite Interface for Defect Passivation of Perovskite Photovoltaics

Author:

Lin Ze Qing,Lian Hui Jun,Ge Bing,Zhou Ziren,Yuan Haiyang,Hou Yu,Yang Shuang,Yang Hua Gui

Abstract

AbstractPassivation, as a classical surface treatment technique, has been widely accepted in start-of-the-art perovskite solar cells (PSCs) that can effectively modulate the electronic and chemical property of defective perovskite surface. The discovery of inorganic passivation compounds, such as oxysalts, has largely advanced the efficiency and lifetime of PSCs on account of its favorable electrical property and remarkable inherent stability, but a lack of deep understanding of how its local configuration affects the passivation effectiveness is a huge impediment for future interfacial molecular engineering. Here, we demonstrate the central-atom-dependent-passivation of oxysalt on perovskite surface, in which the central atoms of oxyacid anions dominate the interfacial oxygen-bridge strength. We revealed that the balance of local interactions between the central atoms of oxyacid anions (e.g., N, C, S, P, Si) and the metal cations on perovskite surface (e.g., Pb) generally determines the bond formation at oxysalt/perovskite interface, which can be understood by the bond order conservation principle. Silicate with less electronegative Si central atoms provides strong O-Pb motif and improved passivation effect, delivering a champion efficiency of 17.26% for CsPbI2Br solar cells. Our strategy is also universally effective in improving the device performance of several commonly used perovskite compositions.

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Surfaces, Coatings and Films,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3