Enhancing the Performance of Carbon‐Based All‐Inorganic CsPbIBr2 Perovskite Solar Cells via Na2SiO3 Surface Treatment for Passivation of the TiO2/Perovskite Interface

Author:

Xue Shuyue1,Yang Sheng1,Liu Yukai1,Su Jinzhan1ORCID

Affiliation:

1. International Research Center for Renewable Energy State Key Laboratory of Multiphase Flow in Power Engineering Xi'an Jiaotong University Xi'an 710049 China

Abstract

CsPbIBr2 has garnered significant interest due to its ideal bandgap and good stability. However, defects formed at the interface between the electron transport layer and the perovskite can lead to increased non‐radiative recombination, which negatively impacts both the power conversion efficiency (PCE) of perovskite solar cells and the long‐term stability of the cells. Herein, the TiO2/perovskite interface is modified by adding sodium silicate to passivate the defects on the interface. The introduction of Na+ partially reduces Ti4+ to Ti3+ in TiO2, thereby passivating trap states caused by oxygen vacancy defects and adjusting the energy level alignment between TiO2 and the perovskite film, enhancing the carrier transport efficiency. Additionally, SiO32− can form SiOPb (and Cs) bonds with the undercoordinated Pb2+ and Cs+ on the surface of the perovskite layer, effectively passivating surface defects of the perovskite film and thereby improving the efficiency of the devices. Ultimately, the carbon‐based all‐inorganic CsPbIBr2 perovskite solar cells treated with Na2SiO3 exhibit a significantly improved PCE of 10.85% compared to 8.62% of the control sample and achieve a high open‐circuit voltage of 1.31 V. With this modification, the devices also demonstrate reduced hysteresis effects and enhanced stability.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3