Assessing the performance of a modified S-transform with probabilistic neural network, support vector machine and nearest neighbour classifiers for single and multiple power quality disturbances identification
Author:
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Software
Link
http://link.springer.com/content/pdf/10.1007/s00521-017-3136-z.pdf
Reference31 articles.
1. Leonowicz Z, Lobos T, Wozniak K (2009) Analysis of non-stationary electric signals using the S-transform. COMPEL 28(1):204–210
2. Mahela OP, Shaik AG, Gupta N (2015) A critical review of detection and classification of power quality events. Renew Sustain Energy Rev 41:495–505
3. Khokhar S, Mohd Zin AAB, Mokhtar ASB, Pesaran M (2015) A comprehensive overview on signal processing and artificial intelligence techniques applications in classification of power quality disturbances. Renew Sustain Energy Rev 51:1650–1663
4. Zhang S, Li P, Zhang L, Li H, Jiang W, Hu Y (2016) Modified S transform and ELM algorithms and their applications in power quality analysis. Neurocomputing 185:231–241
5. Reddy MV, Sodhi R (2016) A rule-based S-transform and AdaBoost based approach for power quality assessment. Electr Power Syst Res 134:66–79
Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Analyzing fricative confusions in healthy and pathological speech using modified S-transform;International Journal of Speech Technology;2024-09-14
2. Power quality disturbance detection using histogram of oriented gradients with extreme learning machine;Electrical Engineering;2024-03-02
3. Multi-strategy active learning for power quality disturbance identification;Applied Soft Computing;2024-03
4. Classification of multiple power quality disturbances based on continuous wavelet transform and lightweight convolutional neural network;Energy Science & Engineering;2023-07-10
5. Automatic Classification Mechanism for the Two Most Common Power Quality Disturbances: Sag and Swell;2022 19th International Multi-Conference on Systems, Signals & Devices (SSD);2022-05-06
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3