Affiliation:
1. Hunan Province Higher Education Key Laboratory of Power System Safety Operation and Control Changsha University of Science and Technology Changsha Hunan Province China
2. School of Electronic Information and Electrical Engineering Changsha University Changsha Hunan Province China
Abstract
AbstractAiming at the problems of noise interference and too many network parameters for power quality disturbances' (PQDs') classification based on deep learning, the lightweight convolutional neural network combining maximum likelihood Kalman filter and continuous wavelet transform is proposed. In this proposed method, the disturbed PQD signals are denoised by maximum likelihood Kalman filter, and then the denoised PQDs are converted to time‐frequency diagrams, which can provide rich time and frequency domain information, and finally the lightweight convolution neural network is used for automatically extracting and classifying multiple PQDs. To verify the effectiveness and superiority of the proposed method, a variety of PQDs were tested under different noise levels, the experiment results indicate that the average classification accuracy can reach more than 99% even in the case of 10 dB noise. Compared with the existing classification methods, the accuracy and noise immunity ability are improved. Additionally, the proposed method has decided advantages, as evidenced by its low parameter count of 0.73M and short average test time with only 0.7 ms.
Subject
General Energy,Safety, Risk, Reliability and Quality
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Fourier Synchro squeezed-LSTM-CNN for Categorization of Power Quality Disturbances;2023 IEEE 3rd International Conference on Smart Technologies for Power, Energy and Control (STPEC);2023-12-10