Author:
Roopa S.,Karjigi Veena,Chandrashekar H. M.
Publisher
Springer Science and Business Media LLC
Reference36 articles.
1. Anjos, I., Eskenazi, M., Marques, N., Grilo, M., Guimaraes, I., Magalhaes, J., & Cavaco, S. (2020). Detection of voicing and place of articulation of fricatives with deep learning in a virtual speech and language therapy tutor. Proceedings of Interspeech. https://doi.org/10.21437/Interspeech.2020-2821
2. Assous, S., & Boashash, B. (2012). Evaluation of the modified S-transform for time-frequency synchrony analysis and source localisation. EURASIP Journal on Advances in Signal Processing, 49, 1–18.
3. Chandrashekar, H. M., Karjigi, V., & Sreedevi, N. (2020). Investigation of different time-frequency representations for intelligibility assessment of dysarthric speech. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 28(12), 2880–2889.
4. Chandrashekar, H. M., Karjigi, V., & Sreedevi, N. (2020). Spectro-temporal representation of speech for intelligibility assessment of dysarthria. IEEE Journal of Selected Topics in Signal Processing, 14(2), 390–399. https://doi.org/10.1109/JSTSP.2019.2949912
5. Chandrashekar H. M., Pavithra, K. S., Karjigi, V., & Sreedevi, N. (2021). Region based prediction and score combination for automatic intelligibility assessment of dysarthric speech. In 2021 international conference on computing, communication, and intelligent systems (ICCCIS) (pp. 407–412), Greater Noida. https://doi.org/10.1109/ICCCIS51004.2021.9397192.