Knowledge- and ambiguity-aware robot learning from corrective and evaluative feedback

Author:

Celemin CarlosORCID,Kober Jens

Abstract

AbstractIn order to deploy robots that could be adapted by non-expert users, interactive imitation learning (IIL) methods must be flexible regarding the interaction preferences of the teacher and avoid assumptions of perfect teachers (oracles), while considering they make mistakes influenced by diverse human factors. In this work, we propose an IIL method that improves the human–robot interaction for non-expert and imperfect teachers in two directions. First, uncertainty estimation is included to endow the agents with a lack of knowledge awareness (epistemic uncertainty) and demonstration ambiguity awareness (aleatoric uncertainty), such that the robot can request human input when it is deemed more necessary. Second, the proposed method enables the teachers to train with the flexibility of using corrective demonstrations, evaluative reinforcements, and implicit positive feedback. The experimental results show an improvement in learning convergence with respect to other learning methods when the agent learns from highly ambiguous teachers. Additionally, in a user study, it was found that the components of the proposed method improve the teaching experience and the data efficiency of the learning process.

Funder

European Research Council

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Software

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Modeling Variation in Human Feedback with User Inputs: An Exploratory Methodology;Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction;2024-03-11

2. A Closer Look at Reward Decomposition for High-Level Robotic Explanations;2023 IEEE International Conference on Development and Learning (ICDL);2023-11-09

3. Advanced Power Converters and Learning in Diverse Robotic Innovation: A Review;Energies;2023-10-19

4. Chat with the Environment: Interactive Multimodal Perception Using Large Language Models;2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS);2023-10-01

5. EValueAction: a proposal for policy evaluation in simulation to support interactive imitation learning;2023 IEEE 21st International Conference on Industrial Informatics (INDIN);2023-07-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3