Advanced Power Converters and Learning in Diverse Robotic Innovation: A Review

Author:

Singh Rupam1,Kurukuru Varaha2,Khan Mohammed3ORCID

Affiliation:

1. Mærsk Mc Kinney Møller Instituttet, SDU Robotics, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark

2. Research Division Power Electronics, Silicon Austria Labs GmbH, Europastraße 12, 9524 Villach, Austria

3. Centre for Industrial Electronics (CIE), University of Southern Denmark, Alsion 2, 6400 Sønderborg, Denmark

Abstract

This paper provides a comprehensive review of the integration of advanced power management systems and learning techniques in the field of robotics. It identifies the critical roles these areas play in reshaping the capabilities of robotic systems across diverse applications. To begin, it highlights the significance of efficient power usage in modern robotics. The paper explains how advanced power converters effectively control voltage, manage current and shape waveforms, thereby optimizing energy utilization. These converters ensure that robotic components receive the precise voltage levels they require, leading to improved motor performance and enabling precise control over motor behavior. Consequently, this results in extended operational times and increased design flexibility. Furthermore, the review explores the integration of learning approaches, emphasizing their substantial impact on robotic perception, decision-making and autonomy. It discusses the application of techniques such as reinforcement learning, supervised learning and unsupervised learning, showcasing their applications in areas like object recognition, semantic segmentation, sensor fusion and anomaly detection. By utilizing these learning methods, robots become more intelligent, adaptable and capable of autonomous operation across various domains. By examining the interaction between advanced power management and learning integration, this review anticipates a future where robots operate with increased efficiency, adapt to various tasks and drive technological innovation across a wide range of industries.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference234 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3