D-Lactic acid fermentation performance and the enzyme activity of a novel bacterium Terrilactibacillus laevilacticus SK5–6

Author:

Prasirtsak Budsabathip,Thitiprasert Sitanan,Tolieng Vasana,Assabumrungrat Suttichai,Tanasupawat Somboon,Thongchul NutthaORCID

Abstract

Abstract Purpose The aim of this study was to prove that Terrilactibacillus laevilacticus SK5-6, a novel D-lactate producer, exhibited a good fermentation performance comparing to the reference D-lactate producer Sporolactobacillus sp. Methods Glucose bioconversion for D-lactate production and the activity of five key enzymes including phosphofructokinase (PFK), pyruvate kinase (PYK), D-lactate dehydrogenase (D-LDH), L-lactate dehydrogenase (L-LDH), and lactate isomerase (LI) were investigated in the cultivation of T. laevilacticus SK5–6 and S. laevolacticus 0361T. Results T. laevilacticus SK5–6 produced D-lactate at higher yield, productivity, and optical purity compared with S. laevolacticus 0361T. T. laevilacticus SK5–6, the catalase-positive isolate, simultaneously grew and produced D-lactate without lag phase while delayed growth and D-lactate production were observed in the culture of S. laevolacticus 0361T. The higher production of D-lactate in T. laevilacticus SK5–6 was due to the higher growth rate and the higher specific activities of the key enzymes observed at the early stage of the fermentation. The low isomerization activity was responsible for the high optical purity of D-lactate in the cultivation of T. laevilacticus SK5–6. Conclusion The lowest specific activity of PFK following by PYK and D/L-LDHs, respectively, indicated that the conversion of fructose-6-phosphate was the rate limiting step. Under the well-optimized conditions, the activation of D/L-LDHs by fructose-1,6-phosphate and ATP regeneration by PYK drove glucose bioconversion toward D-lactate. The optical purity of D-lactate was controlled by D/L-LDHs and the activation of isomerases. High D-LDH with limited isomerase activity was preferable during the fermentation as it assured the high optical purity.

Funder

Research University Network

Grant for International Research Integration: Research Pyramid, Ratchadapiseksomphot Endowment Fund

National Science and Technology Development Agency (NSTDA), Thailand

Thailand Research Fund

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3