Dynamic Mode Decomposition for the Comparison of Engine In-Cylinder Flow Fields from Particle Image Velocimetry (PIV) and Reynolds-Averaged Navier–Stokes (RANS) Simulations

Author:

Baker Samuel,Fang Xiaohang,Shen Li,Willman Christopher,Fernandes Jason,Leach Felix,Davy Martin

Abstract

AbstractValidation of Reynolds-averaged Navier–Stokes (RANS) simulation results against experimental data such as flow measurements from particle image velocimetry (PIV) remains a challenge for the development of thermal propulsion systems. This is partly due to cycle-to-cycle variations (CCVs) in the air motion and partly due to uncertainties in the PIV measurement technique, complicating the question of what constitutes a fair validation target for the RANS model. Indeed, an inappropriate validation target can misguide subsequent adjustments of a RANS model. In this work, the ensemble-averaged PIV field is first investigated for its suitability as a validation target for RANS simulations. The relevance index and the velocity histogram distance are used as quantitative metrics to assess the similarity of the ensemble-averaged field to the full dataset of individual PIV cycles. While a high similarity is seen between the average PIV flow field and the individual cycles on the tumble plane, the similarity is lower and more variable on the cross-tumble plane, where there are significant CCVs. Standard (space-only, phase-dependent) proper orthogonal decomposition (POD) is employed as an alternative method of data processing with the aim of providing a fairer comparison to RANS simulations. The cycle-dependence of the standard POD modes is shown to be an aspect that results in many validation targets and an excessively broad validation range, limiting its utility in this context. Dynamic mode decomposition (DMD) and sparsity-promoting dynamic mode decomposition (SPDMD) are then proposed as alternative solutions, capable of extracting flow structures at specific frequencies. The background 0 Hz SPDMD modes exhibit an ability to produce more realistic flow fields with velocity magnitudes that are significantly closer to the individual cycles.

Funder

Engineering and Physical Sciences Research Council

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3