Flow-pattern switching in a motored spark ignition engine

Author:

Abraham Preeti S1,Yang Xiaofeng2,Gupta Saurabh12,Kuo Tang-Wei2,Reuss David L1,Sick Volker1

Affiliation:

1. Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA

2. Propulsion Systems Research Laboratory, General Motors Global Research & Development, Warren, MI, USA

Abstract

Cycle-to-cycle variability of intake-jet flow in an optical engine was measured using particle image velocimetry, revealing the possibility of two different flow patterns. A phase-dependent proper orthogonal decomposition analysis showed that one or the other flow pattern would appear in the average flow, sampled from test to test or sub-sampled within a single test; each data set contained individual cycles showing one flow pattern or the other. Three-dimensional velocity data from a large-eddy simulation of the engine showed that the particle image velocimetry plane cuts through a region of high shear between the intake jet and another large flow structure. Rotating the measurement plane ±10° revealed one or the other flow structure observed in the particle image velocimetry measurements. Thus, it was hypothesized that cycle-to-cycle variations in the swirl ratio result in the two different flow patterns in the particle image velocimetry plane. Having an unambiguous metric to reveal large-scale flow cycle-to-cycle variability, causes for this variability were examined within the possible sources present in the available testing. In particular, variations in intake-port and cylinder pressure, lateral valve oscillations, and engine RPM were examined as potential causes for the cycle-to-cycle flow variations using the phase-dependent proper orthogonal decomposition coefficients. No direct correlation was seen between the intake-port pressure, or the pressure drop across the intake valve, and the in-cylinder flow pattern. A correlation was observed between dominant flow pattern and cycle-to-cycle variations in intake-valve horizontal position. RPM values and in-cylinder flow patterns did not correlate directly. However, a shift in flow pattern was observed between early and late cycles in a 2900-cycle test after an approximately 5 r/min engine speed perturbation.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3