Using LES to Simulate Cycle-to-Cycle Variability During the Gas Exchange Process

Author:

Ameen Muhsin M.1,Yang Xiaofeng2,Kuo Tang-Wei2,Som Sibendu1

Affiliation:

1. Argonne National Laboratory, Lemont, IL

2. GM R&D, Pontiac, MI

Abstract

In spark ignition (SI) engines, high efficiencies are typically obtained near limits of stable operation which may result in high cycle-to-cycle variations (CCV). Traditional computational fluid dynamics (CFD) tools like Reynolds-averaged Navier-Stokes simulations (RANS) may not predict the CCV in engines. Higher fidelity CFD tools like large-eddy simulations (LES) have been shown to capture these CCV. In this paper, LES of a motored transparent combustion chamber (TCC) engine is performed to simulate the CCV introduced during the gas exchange process. A grid convergence study is performed, and it is shown that using a 1 mm in-cylinder grid size leads to similar flowfield statistics as compared to using a 0.5 mm in-cylinder grid size. The phase-averaged mean and root mean square (RMS) flowfields predicted by LES are validated comprehensively using particle image velocimetry (PIV) measurements. The validation is performed for 4 different crank angles, corresponding to the intake, compression, expansion and exhaust strokes, and for three different measurement planes. It is shown that LES is able to accurately predict the mean velocities, whereas the RMS velocity magnitudes are under-predicted. The inaccuracy in the RMS velocities are largest during the intake stroke, whereas good agreement with the measurements is observed during the expansion and exhaust strokes. A similarity index analysis provides a quantitative measure of the number of cycles that are required to be simulated to capture the flowfield statistics. This analysis is applied to both the PIV dataset and CFD dataset. It is shown that approximately 20 cycles are sufficient to obtain converged mean and RMS flowfields from the simulations, whereas the PIV measurements require approximately 40 cycles. Faster convergence for the LES results is because the simulations do not take into account additional uncertainties in the rpm, plenum pressures, boundary temperatures and so on, which are present in the experiments.

Publisher

American Society of Mechanical Engineers

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3