A Numerical Investigation of the Effects of Fuel Composition on the Minimum Ignition Energy for Homogeneous Biogas-Air Mixtures

Author:

Papapostolou VassiliosORCID,Turquand d’Auzay Charles,Chakraborty Nilanjan

Abstract

AbstractThe minimum ignition energy (MIE) requirements for ensuring successful thermal runaway and self-sustained flame propagation have been analysed for forced ignition of homogeneous stoichiometric biogas-air mixtures for a wide range of initial turbulence intensities and CO2 dilutions using three-dimensional Direct Numerical Simulations under decaying turbulence. The biogas is represented by a CH4 + CO2 mixture and a two-step chemical mechanism involving incomplete oxidation of CH4 to CO and H2O and an equilibrium between the CO oxidation and the CO2 dissociation has been used for simulating biogas-air combustion. It has been found that the MIE increases with increasing CO2 content in the biogas due to the detrimental effect of the CO2 dilution on the burning and heat release rates. The MIE for ensuring self-sustained flame propagation has been found to be greater than the MIE for ensuring only thermal runaway irrespective of its outcome for large root-mean-square (rms) values of turbulent velocity fluctuation, and the MIE values increase with increasing rms turbulent velocity for both cases. It has been found that the MIE values increase more steeply with increasing rms turbulent velocity beyond a critical turbulence intensity than in the case of smaller turbulence intensities. The variations of the normalised MIE (MIE normalised by the value for the quiescent laminar condition) with normalised turbulence intensity for biogas-air mixtures are found to be qualitatively similar to those obtained for the undiluted mixture. However, the critical turbulence intensity has been found to decrease with increasing CO2 dilution. It has been found that the normalised MIE for self-sustained flame propagation increases with increasing rms turbulent velocity following a power-law and the power-law exponent has been found not to vary much with the level of CO2 dilution. This behaviour has been explained using a scaling analysis and flame wrinkling statistics. The stochasticity of the ignition event has been analysed by using different realisations of statistically similar turbulent flow fields for the energy inputs corresponding to the MIE and it has been demonstrated that successful outcomes are obtained in most of the instances, justifying the accuracy of the MIE values identified by this analysis.

Funder

Engineering and Physical Sciences Research Council

Newcastle University

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,General Chemical Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3