Effect of Turbulence On Forced Ignition of Jet-A/Air Mixtures

Author:

Teope Kaz1,Blunck David L.1

Affiliation:

1. School of Mechanical, Industrial, and Manufacturing Engineering Oregon State University, Oregon 97330

Abstract

Abstract Consistent ignition of reactive mixtures in turbulent conditions continues to be a challenge, particularly for large, multi-component fuels. Prior work has shown that turbulence can affect ignition parameters such as flame speed, mixture temperature, and minimum ignition energy. However, these works have primarily considered small, single-component fuels. This work studies the effect of turbulence on forced ignition of jet-A/air mixtures with f between 0.3 and 0.7. The ignition probability of these mixtures was measured for bulk velocities between 5 and 7 m/s and turbulence intensities between 3% and 9%. A FLIR SC6700 infrared camera was used to measure the radiation intensity emitted by the flame kernels. Increases in turbulence intensity between 3% and 4% cause the probability of ignition to generally increase. This increase is attributed to the negative flame stretch that develops as a result of the turbulence. This observation is significant because it shows that turbulence can facilitate ignition for jet-A/air mixtures. In contrast, increasing turbulence beyond 5% causes ignition probabilities to decrease. This reduction occurs due to the increased role of heat diffusion and the associated reduction in kernel temperature. The sensitivities of ignition behavior to turbulence intensity and fuel chemistry are reasonably captured using the Peclet number. Further agreement in ignition behavior is achieved by considering Pe/TI2. Ignition probability data for two additional fuels were compared using Pe/TI2. Reasonable agreement within a 95% confidence interval was observed for CH4 mixtures but not for C3H8 mixtures.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3