Values and inductive risk in machine learning modelling: the case of binary classification models

Author:

Karaca KorayORCID

Abstract

AbstractI examine the construction and evaluation of machine learning (ML) binary classification models. These models are increasingly used for societal applications such as classifying patients into two categories according to the presence or absence of a certain disease like cancer and heart disease. I argue that the construction of ML (binary) classification models involves an optimisation process aiming at the minimization of the inductive risk associated with the intended uses of these models. I also argue that the construction of these models is underdetermined by the available data, and that this makes it necessary for ML modellers to make social value judgments in determining the error costs (associated with misclassifications) used in ML optimization. I thus suggest that the assessment of the inductive risk with respect to the social values of the intended users is an integral part of the construction and evaluation of ML classification models. I also discuss the implications of this conclusion for the philosophical debate concerning inductive risk.

Publisher

Springer Science and Business Media LLC

Subject

History and Philosophy of Science,Philosophy

Reference70 articles.

1. Abu-Mostafa, Y. S., Magdon-Ismail, M., & Lin, H.-T. (2012). Learning from data. AMLbook.com.

2. Alpaydin, E. (2010). Introduction to machine learning. The MIT Press.

3. Barocas, S., & Selbst, A. D. (2016). Big data’s disparate impact. California Law Review, 104, 671–732.

4. Bauckhage, C., Ojeda, C., Schücker, J., Sifa, R., & Wrobel, S. (2018). Informed machine learning through functional composition. In Proceedings of LWDA (pp. 33–37).

5. Biddle, J. B. (2020). On predicting recidivism: Epistemic risk, tradeoffs, and values in machine learning. Canadian Journal of Philosophy. https://doi.org/10.1017/can.2020.27

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3