Abstract
AbstractRecent scholarship in philosophy of science and technology has shown that scientific and technological decision making are laden with values, including values of a social, political, and/or ethical character. This paper examines the role of value judgments in the design of machine-learning (ML) systems generally and in recidivism-prediction algorithms specifically. Drawing on work on inductive and epistemic risk, the paper argues that ML systems are value laden in ways similar to human decision making, because the development and design of ML systems requires human decisions that involve tradeoffs that reflect values. In many cases, these decisions have significant—and, in some cases, disparate—downstream impacts on human lives. After examining an influential court decision regarding the use of proprietary recidivism-prediction algorithms in criminal sentencing,Wisconsin v. Loomis, the paper provides three recommendations for the use of ML in penal systems.
Publisher
Cambridge University Press (CUP)
Reference62 articles.
1. The New Profiling
2. Responsibility & Machine Learning: Part of a Process
3. Shueh, Jason . 2016. “White House Challenges Artificial Intelligence Experts to Reduce Incarceration Rates.” Government Technology, June 7. https://www.govtech.com/computing/White-House-Challenges-Artificial-Intelligence-Experts-to-Reduce-Incarceration-Rates.html.
4. Schroeder, Andrew . 2020. “Values in Science: Ethical vs. Political Approaches.” Canadian Journal of Philosophy.
5. Bias and values in scientific research
Cited by
38 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献