Combination of unsupervised discretization methods for credit risk

Author:

Fuentes Cabrera José G.,Pérez Vicente Hugo A.ORCID,Maldonado Sebastián,Velasco JonásORCID

Abstract

Creating robust and explainable statistical learning models is essential in credit risk management. For this purpose, equally spaced or frequent discretization is the de facto choice when building predictive models. The methods above have limitations, given that when the discretization procedure is constrained, the underlying patterns are lost. This study introduces an innovative approach by combining traditional discretization techniques with clustering-based discretization, specifically k means and Gaussian mixture models. The study proposes two combinations: Discrete Competitive Combination (DCC) and Discrete Exhaustive Combination (DEC). Discrete Competitive Combination selects features based on the discretization method that performs better on each feature, whereas Discrete Exhaustive Combination includes every discretization method to complement the information not captured by each technique. The proposed combinations were tested on 11 different credit risk datasets by fitting a logistic regression model using the weight of evidence transformation over the training partition and contrasted over the validation partition. The experimental findings showed that both combinations similarly outperform individual methods for the logistic regression without compromising the computational efficiency. More importantly, the proposed method is a feasible and competitive alternative to conventional methods without reducing explainability.

Funder

ANID PIA BASAL

FONDECYT Chile

Chairs Program of the National Council of Humanities, Science and Technology

Universidad Iberoamericana Ciudad de México

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference60 articles.

1. Machine learning for enterprises: Applications, algorithm selection, and challenges;I Lee;Business Horizons,2020

2. Deep learning and implementations in banking;H. Hassani;Annals Of Data Science,2020

3. Improving binary classification using filtering based on k-NN proximity graphs;M. Ala’raj;Journal Of Big Data,2020

4. Values and inductive risk in machine learning modelling: the case of binary classification models;K Karaca;European Journal For Philosophy Of Science,2021

5. A Genetic Programming Approach to Binary Classification Problem;L. Santoso;EAI Endorsed Transactions On Energy Web,2020

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Sounds Prediction Instruments Based Using K-Means and Bat Algorithm;Lecture Notes in Networks and Systems;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3