Ensemble-Based Electrical Resistivity Tomography with Data and Model Space Compression

Author:

Aleardi MattiaORCID,Vinciguerra Alessandro,Hojat Azadeh

Abstract

AbstractInversion of electrical resistivity tomography (ERT) data is an ill-posed problem that is usually solved through deterministic gradient-based methods. These methods guarantee a fast convergence but hinder accurate assessments of model uncertainties. On the contrary, Markov Chain Monte Carlo (MCMC) algorithms can be employed for accurate uncertainty appraisals, but they remain a formidable computational task due to the many forward model evaluations needed to converge. We present an alternative approach to ERT that not only provides a best-fitting resistivity model but also gives an estimate of the uncertainties affecting the inverse solution. More specifically, the implemented method aims to provide multiple realizations of the resistivity values in the subsurface by iteratively updating an initial ensemble of models based on the difference between the predicted and measured apparent resistivity pseudosections. The initial ensemble is generated using a geostatistical method under the assumption of log-Gaussian distributed resistivity values and a Gaussian variogram model. A finite-element code constitutes the forward operator that maps the resistivity values onto the associated apparent resistivity pseudosection. The optimization procedure is driven by the ensemble smoother with multiple data assimilation, an iterative ensemble-based algorithm that performs a Bayesian updating step at each iteration. The main advantages of the proposed approach are that it can be applied to nonlinear inverse problems, while also providing an ensemble of models from which the uncertainty on the recovered solution can be inferred. The ill-conditioning of the inversion procedure is decreased through a discrete cosine transform reparameterization of both data and model spaces. The implemented method is first validated on synthetic data and then applied to field data. We also compare the proposed method with a deterministic least-square inversion, and with an MCMC algorithm. We show that the ensemble-based inversion estimates resistivity models and associated uncertainties comparable to those yielded by a much more computationally intensive MCMC sampling.

Funder

Ministero dell'Ambiente e della Tutela del Territorio e del Mare

Università di Pisa

Publisher

Springer Science and Business Media LLC

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3