Stochastic inversion of time‐lapse electrical resistivity tomography data by means of an adaptive ensemble‐based approach

Author:

Vinciguerra Alessandro123ORCID,Aleardi Mattia1ORCID,Madsen Line Meldgaard4,Bording Thue Sylvester5,Christiansen Anders Vest4,Stucchi Eusebio1

Affiliation:

1. Earth Sciences Department University of Pisa Pisa Italy

2. Earth Sciences Department University of Florence Florence Italy

3. CNRS, ENGEES, Institut Terre et Environnement de Strasbourg, UMR 7063 University of Strasbourg Strasbourg France

4. Department of Geoscience Aarhus University Aarhus Denmark

5. Aarhus GeoInstruments Aarhus Denmark

Abstract

AbstractInversion of time‐lapse electrical resistivity tomography is an extension of the conventional electrical resistivity tomography inversion that aims to reconstruct resistivity variations in time. This method is widely used in monitoring subsurface processes such as groundwater evolution. The inverse problem is usually solved through deterministic algorithms, which usually guarantee a fast solution convergence. However, the electrical resistivity tomography inverse problem is ill‐posed and non‐linear, and it could exist more than one resistivity model that explains the observed data. This paper explores a Bayesian approach based on data assimilation, the ensemble smoother multiple data assimilation. In particular, we apply an adaptive approach in which the inflation coefficient is chosen based on the error function, that is the ensemble smoother multiple data assimilation restricted step. Our inversion approach aims to invert the data acquired at two different times simultaneously, estimating the resistivity model and its variation. In addition, the Bayesian approach allows for the assessment of the posterior probability density function needed for quantifying the uncertainties associated with the results. To test the method, we first apply the algorithm to synthetic data generated from realistic resistivity models; then, we invert field data from the Pillemark landfill monitoring station (Samsø, Denmark). Inversion results show that the ensemble smoother multiple data assimilation restricted step can correctly detect the resistivity variation both in the synthetic and in the field case, with an affordable computational burden. In addition, assessing the uncertainties allows us to interpret the reconstructed resistivity model correctly. This paper demonstrates the potential of the data assimilation approach in Bayesian time‐lapse electrical resistivity tomography inversion.

Publisher

Wiley

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3