Elastic prestack seismic inversion through discrete cosine transform reparameterization and convolutional neural networks

Author:

Aleardi Mattia1ORCID,Salusti Alessandro2ORCID

Affiliation:

1. University of Pisa, Earth Sciences Department, via S. Maria 53, Pisa 56126, Italy.(corresponding author).

2. University of Pisa, Earth Sciences Department, via S. Maria 53, Pisa 56126, Italy and University of Florence, Earth Sciences Department, via G. La Pira 4, Florence 50121, Italy..

Abstract

We have developed a prestack inversion algorithm that combines a discrete cosine transform (DCT) reparameterization of data and model spaces with a convolutional neural network (CNN). The CNN is trained to predict the mapping between the discrete cosine-transformed seismic data and the discrete cosine-transformed 2D elastic model. A convolutional forward modeling based on the full Zoeppritz equations constitutes the link between the elastic properties and the seismic data. The direct sequential cosimulation algorithm with joint probability distribution is used to generate the training and validation data sets under the assumption of a stationary nonparametric prior and a Gaussian variogram model for the elastic properties. The DCT is an orthogonal transformation that we used as an additional feature extraction technique that reduces the number of unknown parameters in the inversion and the dimensionality of the input and output of the network. The DCT reparameterization also acts as a regularization operator in the model space and allows for the preservation of the lateral and vertical continuity of the elastic properties in the recovered solution. We also implement a Monte Carlo simulation strategy that propagates onto the estimated elastic model the uncertainties related to noise contamination and network approximation. We focus on synthetic inversions on a realistic subsurface model that mimics a real gas-saturated reservoir hosted in a turbiditic sequence. We compare the outcomes of the implemented algorithm with those provided by a popular linear inversion approach, and we also evaluate the robustness of the CNN inversion to errors in the estimated source wavelet and to erroneous assumptions about the noise statistic. Our tests confirm the applicability of our proposed approach, opening the possibility of estimating the subsurface elastic parameters and the associated uncertainties in near real time while satisfactorily preserving the assumed spatial variability and the statistical properties of the elastic parameters.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3