Use of machine learning-based classification algorithms in the monitoring of Land Use and Land Cover practices in a hilly terrain
Author:
Publisher
Springer Science and Business Media LLC
Subject
Management, Monitoring, Policy and Law,Pollution,General Environmental Science,General Medicine
Link
https://link.springer.com/content/pdf/10.1007/s10661-023-12131-7.pdf
Reference50 articles.
1. Atef, I., Ahmed, W., & Abdel-Maguid, R. H. (2023). Modelling of land use land cover changes using machine learning and GIS techniques: A case study in El-Fayoum Governorate Egypt. Environ Monit Assess, 195, 637. https://doi.org/10.1007/s10661-023-11224-7
2. Ballanti, L., Blesius, L., Hines, E., & Kruse, B. (2016). Tree species classification using hyperspectral imagery: A comparison of two classifiers. Remote Sens, 8–20, 445.
3. Bouhennache, R., Bouden, T., Ahmed, A. T., & Cheddad, A. (2019). A new spectral index for the extraction of built-up land features from Landsat 8 satellite imagery. Geocarto International, 34(14), 1531–1551. https://doi.org/10.1080/10106049.2018.1497094
4. Bradski, G., & Kaehler, A. (2008). Learning OpenCV; O’Reilly: Sebastopol. CA.
5. Breiman, L. (2001). Random forests. Machine Learning, 45, 5–32.
Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Evaluating Machine-Learning Algorithms for Mapping LULC of the uMngeni Catchment Area, KwaZulu-Natal;Remote Sensing;2024-06-19
2. Mapping tree carbon density using sentinel 2A sensor on Google Earth Engine in Darjeeling Himalayas: Implication for tree carbon management and climate change mitigation;Physics and Chemistry of the Earth, Parts A/B/C;2024-06
3. Machine learning versus deep learning in land system science: a decision-making framework for effective land classification;Frontiers in Remote Sensing;2024-05-23
4. Spatiotemporal snowline status and climate variability impact assessment: a case study of Pindari River Basin, Kumaun Himalaya, India;Environmental Sciences Europe;2024-05-22
5. Combining Local Knowledge with Object-Based Machine Learning Techniques for Extracting Informal Settlements from Very High-Resolution Satellite Data;Earth Systems and Environment;2024-04-10
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3