Artificial intelligence methods for modeling gasification of waste biomass: a review
Author:
Publisher
Springer Science and Business Media LLC
Link
https://link.springer.com/content/pdf/10.1007/s10661-024-12443-2.pdf
Reference183 articles.
1. Abdel-Jaber, H., Devassy, D., Al Salam, A., Hidaytallah, L., & El-Amir, M. (2022). A review of deep learning algorithms and their applications in healthcare. In Algorithms (Vol. 15, Issue 2). MDPI. https://doi.org/10.3390/a15020071
2. Afolabi, I. C., Popoola, S. I., & Bello, O. S. (2020). Modeling pseudo-second-order kinetics of orange peel-paracetamol adsorption process using artificial neural network. Chemometrics and Intelligent Laboratory Systems, 203. https://doi.org/10.1016/j.chemolab.2020.104053
3. Aghbashlo, M., Peng, W., Tabatabaei, M., Kalogirou, S. A., Soltanian, S., Hosseinzadeh-Bandbafha, H., Mahian, O., & Lam, S. S. (2021). Machine learning technology in biodiesel research: A review. In Progress in Energy and Combustion Science (Vol. 85). Elsevier Ltd. https://doi.org/10.1016/j.pecs.2021.100904
4. Aguilar, D. L., Medina-Perez, M. A., Loyola-Gonzalez, O., Choo, K. K. R., & Bucheli-Susarrey, E. (2023). Towards an interpretable autoencoder: A decision-tree-based autoencoder and its application in anomaly detection. IEEE Transactions on Dependable and Secure Computing, 20(2), 1048–1059. https://doi.org/10.1109/TDSC.2022.3148331
5. Ahmed, S. F., Alam, M. S., Bin, H., Rozbu, M., Ishtiak, M. R., Rafa, T., Mofijur, N., Shawkat, M., Ali, A. B. M., & Gandomi, A. H. (2023). Deep learning modelling techniques: Current progress, applications, advantages, and challenges. Artificial Intelligence Review. https://doi.org/10.1007/s10462-023-10466-8
Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Analysis of 27 supervised machine learning models for the co-gasification assessment of peanut shell and spent tea residue in an open-core downdraft gasifier;Renewable Energy;2024-11
2. Exploring Insights in Biomass and Waste Gasification via Ensemble Machine Learning Models and Interpretability Techniques;International Journal of Energy Research;2024-01
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3