Exploring Insights in Biomass and Waste Gasification via Ensemble Machine Learning Models and Interpretability Techniques

Author:

Bongomin OcidentORCID,Nzila Charles,Mwasiagi Josphat Igadwa,Maube Obadiah

Abstract

This comprehensive review delves into the intersection of ensemble machine learning models and interpretability techniques for biomass and waste gasification, a field crucial for sustainable energy solutions. It tackles challenges like feedstock variability and temperature control, highlighting the need for deeper understanding to optimize gasification processes. The study focuses on advanced modeling techniques like random forests and gradient boosting, alongside interpretability methods like the Shapley additive explanations and partial dependence plots, emphasizing their importance for transparency and informed decision‐making. Analyzing diverse case studies, the review explores successful applications while acknowledging challenges like overfitting and computational complexity, proposing strategies for practical and robust models. Notably, the review finds ensemble models consistently achieve high prediction accuracy (often exceeding R2 scores of 0.9) for gas composition, yield, and heating value. These models (34% of reviewed papers) are the most applied method, followed by artificial neural networks (26%). Heating value (12%) was the most studied performance metric. However, interpretability is often neglected during model development due to the complexity of techniques like permutation and Gini importance. The paper calls for dedicated research on utilizing and interpreting ensemble models, especially for co‐gasification scenarios, to unlock new insights into process synergy. Overall, this review serves as a valuable resource for researchers, practitioners, and policymakers, offering guidance for enhancing the efficiency and sustainability of biomass and waste gasification.

Funder

Moi University

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3