Towards an Interpretable Autoencoder: A Decision-Tree-Based Autoencoder and its Application in Anomaly Detection
Author:
Affiliation:
1. Tecnologico de Monterrey, Atizapán, Estado de México, México
2. Altair Management Consultants, Madrid, Spain
3. Department of Information Systems and Cyber Security, University of Texas at San Antonio, San Antonio, TX, USA
Funder
National Council of Science and Technology of Mexico
National Science Foundation
National Security Agency
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
Electrical and Electronic Engineering
Link
https://ieeexplore.ieee.org/ielam/8858/10068314/9705133-aam.pdf
Reference56 articles.
1. Black-Box vs. White-Box: Understanding Their Advantages and Weaknesses From a Practical Point of View
2. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead
3. A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
4. Explaining Explanations: An Overview of Interpretability of Machine Learning
5. Convolutional neural networks for seizure prediction using intracranial and scalp electroencephalogram
Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Data-driven AI algorithms for construction machinery;Automation in Construction;2024-11
2. Charge Manipulation Attacks Against Smart Electric Vehicle Charging Stations and Deep Learning-Based Detection Mechanisms;IEEE Transactions on Smart Grid;2024-09
3. Effective alerting for bridge monitoring via a machine learning-based anomaly detection method;Structural Health Monitoring;2024-08-24
4. Robust Federated Learning for Energy Storage Systems;2024 IEEE Wireless Communications and Networking Conference (WCNC);2024-04-21
5. An Ensemble Framework for Network Anomaly Detection Using Isolation Forest and Autoencoders;2024 International Conference on Advances in Data Engineering and Intelligent Computing Systems (ADICS);2024-04-18
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3