Adaptations for extremely high muscular power output: why do muscles that operate at intermediate cycle frequencies generate the highest powers?

Author:

Askew Graham N.

Abstract

AbstractThe pectoralis muscles of the blue-breasted quail Coturnix chinensis generate the highest power output over a contraction cycle measured to date, approximately 400 W kg− 1. The power generated during a cyclical contraction is the product of work and cycle frequency (or standard operating frequency), suggesting that high powers should be favoured by operating at high cycle frequencies. Yet the quail muscles operate at an intermediate cycle frequency (23 Hz), which is much lower than the highest frequency skeletal muscles are capable of operating (~ 200 Hz in vertebrates). To understand this apparent anomaly, in this paper I consider the adaptations that favour high mechanical power as well as the trade-offs that occur between force and muscle operating frequency that limit power. It will be shown that adaptations that favour rapid cyclical contractions compromise force generation; consequently, maximum power increases with cycle frequency to approximately 15–25 Hz, but decreases at higher cycle frequencies. At high cycle frequencies, muscle stress is reduced by a decrease in the crossbridge duty cycle and an increase in the proportion of the muscle occupied by non-contractile elements such as sarcoplasmic reticulum and mitochondria. Muscles adapted to generate high powers, such as the pectoralis muscle of blue-breasted quail, exhibit: (i) intermediate contraction kinetics; (ii) a high relative myofibrillar volume; and (iii) a high maximum shortening velocity and a relatively flat force-velocity relationship. They are also characterised by (iv) operating at an intermediate cycle frequency; (v) utilisation of asymmetrical length trajectories, with a high proportion of the cycle spent shortening; and, finally, (vi) relatively large muscles. In part, the high power output of the blue-breasted quail pectoralis muscle can be attributed to its body size and the intermediate wing beat frequency required to generate aerodynamic force to support body mass, but in addition specialisations in the contractile and morphological properties of the muscle favour the generation of high stress at high strain rates.

Funder

Biotechnology and Biological Sciences Research Council

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Biochemistry,Physiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3