Conserved mammalian muscle mechanics during eccentric contractions

Author:

Kissane Roger W. P.1ORCID,Askew Graham N.2ORCID

Affiliation:

1. Department of Musculoskeletal & Ageing Science University of Liverpool Liverpool UK

2. School of Biomedical Sciences University of Leeds Leeds UK

Abstract

AbstractSkeletal muscle has a broad range of biomechanical functions, including power generation and energy absorption. These roles are underpinned by the force–velocity relationship, which comprises two distinct components: a concentric and an eccentric force–velocity relationship. The concentric component has been extensively studied across a wide range of muscles with different muscle properties. However, to date, little progress has been made in accurately characterising the eccentric force–velocity relationship in mammalian muscle with varying muscle properties. Consequently, mathematical models of this muscle behaviour are based on a poorly understood phenomenon. Here, we present a comprehensive assessment of the concentric force–velocity and eccentric force–velocity relationships of four mammalian muscles (soleus, extensor digitorum longus, diaphragm and digastric) with varying biomechanical functions, spanning three orders of magnitude in body mass (mouse, rat and rabbits). The force–velocity relationship was characterised using a hyperbolic‐linear equation for the concentric component a hyperbolic equation for the eccentric component, at the same time as measuring the rate of force development in the two phases of force development in relation to eccentric lengthening velocity. We demonstrate that, despite differences in the curvature and plateau height of the eccentric force–velocity relationship, the rates of relative force development were consistent for the two phases of the force–time response during isovelocity lengthening ramps, in relation to lengthening velocity, in the four muscles studied. Our data support the hypothesis that this relationship depends on cross‐bridge and titin activation. Hill‐type musculoskeletal models of the eccentric force–velocity relationship for mammalian muscles should incorporate this biphasic force response. imageKey points The capacity of skeletal muscle to generate mechanical work and absorb energy is underpinned by the force–velocity relationship. Despite identification of the lengthening (eccentric) force–velocity relationship over 80 years ago, no comprehensive study has been undertaken to characterise this relationship in skeletal muscle. We show that the biphasic force response seen during active muscle lengthening is conserved over three orders of magnitude of mammalian skeletal muscle mass. Using mice with a small deletion in titin, we show that part of this biphasic force profile in response to muscle lengthening is reliant on normal titin activation. The rate of force development during muscle stretch may be a more reliable way to describe the forces experienced during eccentric muscle contractions compared to the traditional hyperbolic curve fitting, and functions as a novel predictor of force–velocity characteristics that may be used to better inform hill‐type musculoskeletal models and assess pathophysiological remodelling.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3