Energy load forecasting: one-step ahead hybrid model utilizing ensembling

Author:

Tsalikidis Nikos,Mystakidis Aristeidis,Tjortjis ChristosORCID,Koukaras Paraskevas,Ioannidis Dimosthenis

Abstract

AbstractIn the light of the adverse effects of climate change, data analysis and Machine Learning (ML) techniques can provide accurate forecasts, which enable efficient scheduling and operation of energy usage. Especially in the built environment, Energy Load Forecasting (ELF) enables Distribution System Operators or Aggregators to accurately predict the energy demand and generation trade-offs. This paper focuses on developing and comparing predictive algorithms based on historical data from a near Zero Energy Building. This involves energy load, as well as temperature data, which are used to develop and evaluate various base ML algorithms and methodologies, including Artificial Neural Networks and Decision-trees, as well as their combination. Each algorithm is fine-tuned and tested, accounting for the unique data characteristics, such as the presence of photovoltaics, in order to produce a robust approach for One-Step-Ahead ELF. To this end, a novel hybrid model utilizing ensemble methods was developed. It combines multiple base ML algorithms the outputs of which are utilized to train a meta-model voting regressor. This hybrid model acts as a normalizer for any new data input. An experimental comparison of the model against unseen data and other ensemble approaches, showed promising forecasting results (mean absolute percentage error = 5.39%), particularly compared to the base algorithms.

Funder

International Hellenic University

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Numerical Analysis,Theoretical Computer Science,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3