Abstract
Load forecasting (LF) is an essential factor in power system management. LF helps the utility maximize the utilization of power-generating plants and schedule them both reliably and economically. In this paper, a novel and hybrid forecasting method is proposed, combining a long short-term memory network (LSTM) and neural prophet (NP) through an artificial neural network. The paper aims to predict electric load for different time horizons with improved accuracy as well as consistency. The proposed model uses historical load data, weather data, and statistical features obtained from the historical data. Multiple case studies have been conducted with two different real-time data sets on three different types of load forecasting. The hybrid model is later compared with a few established methods of load forecasting found in the literature with different performance metrics: mean average percentage error (MAPE), root mean square error (RMSE), sum of square error (SSE), and regression coefficient (R). Moreover, a guideline with various attributes is provided for different types of load forecasting considering the applications of the proposed model. The results and comparisons from our test cases showed that the proposed hybrid model improved the forecasting accuracy for three different types of load forecasting over other forecasting techniques.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
53 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献