Urban Traffic Congestion Prediction: A Multi-Step Approach Utilizing Sensor Data and Weather Information

Author:

Tsalikidis Nikolaos1ORCID,Mystakidis Aristeidis12ORCID,Koukaras Paraskevas12ORCID,Ivaškevičius Marius3ORCID,Morkūnaitė Lina3ORCID,Ioannidis Dimosthenis1ORCID,Fokaides Paris A.3ORCID,Tjortjis Christos12ORCID,Tzovaras Dimitrios1ORCID

Affiliation:

1. Information Technologies Institute, Centre for Research & Technology Hellas, 57001 Thessaloniki, Greece

2. School of Science and Technology, International Hellenic University, 14th km Thessaloniki-Moudania, 57001 Thessaloniki, Greece

3. Faculty of Civil Engineering and Architecture, Kaunas University of Technology, K. Donelaicio St. 73, LT-44249 Kaunas, Lithuania

Abstract

The continuous growth of urban populations has led to the persistent problem of traffic congestion, which imposes adverse effects on quality of life, such as commute times, road safety, and the local air quality. Advancements in Internet of Things (IoT) sensor technology have contributed to a plethora of new data streams regarding traffic conditions. Therefore, the recognition and prediction of traffic congestion patterns utilizing such data have become crucial. To that end, the integration of Machine Learning (ML) algorithms can further enhance Intelligent Transportation Systems (ITS), contributing to the smart management of transportation systems and effectively tackling traffic congestion in cities. This study seeks to assess a wide range of models as potential solutions for an ML-based multi-step forecasting approach intended to improve traffic congestion prediction, particularly in areas with limited historical data. Various interpretable predictive algorithms, suitable for handling the complexity and spatiotemporal characteristics of urban traffic flow, were tested and eventually shortlisted based on their predictive performance. The forecasting approach selects the optimal model in each step to maximize the accuracy. The findings demonstrate that, in a 24 h step prediction, variating Ensemble Tree-Based (ETB) regressors like the Light Gradient Boosting Machine (LGBM) exhibit superior performances compared to traditional Deep Learning (DL) methods. Our work provides a valuable contribution to short-term traffic congestion predictions and can enable more efficient scheduling of daily urban transportation.

Funder

EU’s Horizon Europe research and innovation program

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. M2M Interface for IoT Traffic Light with Computer Vision and AnyLogic PLE;Communications in Computer and Information Science;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3