Consequences of barriers and changing seasonality on population dynamics and harvest of migratory ungulates

Author:

Van Moorter BramORCID,Engen Steinar,Fryxell John M.,Panzacchi Manuela,Nilsen Erlend B.,Mysterud Atle

Abstract

AbstractMany animal populations providing ecosystem services, including harvest, live in seasonal environments and migrate between seasonally distinct ranges. Unfortunately, two major sources of human-induced global change threaten these populations: climate change and anthropogenic barriers. Anthropogenic infrastructure developments present a global threat to animal migrations through increased migration mortality or behavioral avoidance. Climate change alters the seasonal and spatial dynamics of resources and therefore the effects of migration on population performance. We formulated a population model with ideal-free migration to investigate changes in population size and harvest yield due to barriers and seasonal dynamics. The model predicted an increasing proportion of migrants when the difference between areas in seasonality or carrying capacity increased. Both migration cost and behavioral avoidance of barriers substantially reduced population size and harvest yields. Not surprisingly, the negative effects of barriers were largest when the population benefited most from migration. Despite the overall decline in harvest yield from a migratory population due to barriers, barriers could result in locally increased yield from the resident population following reduced competition from migrants. Our approach and results enhance the understanding of how global warming and infrastructure development worldwide may change population dynamics and harvest offtake affecting livelihoods and rural economies.

Funder

Norges Forskningsråd

Publisher

Springer Science and Business Media LLC

Subject

Ecological Modeling,Ecology

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3