Genetic divergence and one‐way gene flow influence contemporary evolution and ecology of a partially migratory fish

Author:

Kobayashi Katie M.12ORCID,Bond Rosealea M.23ORCID,Reid Kerry4ORCID,Garza J. Carlos235,Kiernan Joseph D.23,Palkovacs Eric P.12ORCID

Affiliation:

1. Department of Ecology and Evolutionary Biology University of California Santa Cruz California USA

2. Fisheries Collaborative Program, Institute of Marine Sciences University of California Santa Cruz California USA

3. Southwest Fisheries Science Center National Marine Fisheries Service Santa Cruz California USA

4. Area of Ecology and Biodiversity, School of Biological Sciences University of Hong Kong Hong Kong Hong Kong, SAR

5. Department of Ocean Sciences University of California Santa Cruz California USA

Abstract

AbstractRecent work has revealed the importance of contemporary evolution in shaping ecological outcomes. In particular, rapid evolutionary divergence between populations has been shown to impact the ecology of populations, communities, and ecosystems. While studies have focused largely on the role of adaptive divergence in generating ecologically important variation among populations, much less is known about the role of gene flow in shaping ecological outcomes. After divergence, populations may continue to interact through gene flow, which may influence evolutionary and ecological processes. Here, we investigate the role of gene flow in shaping the contemporary evolution and ecology of recently diverged populations of anadromous steelhead and resident rainbow trout (Oncorhynchus mykiss). Results show that resident rainbow trout introduced above waterfalls have diverged evolutionarily from downstream anadromous steelhead, which were the source of introductions. However, the movement of fish from above to below the waterfalls has facilitated gene flow, which has reshaped genetic and phenotypic variation in the anadromous source population. In particular, gene flow has led to an increased frequency of residency, which in turn has altered population density, size structure, and sex ratio. This result establishes gene flow as a contemporary evolutionary process that can have important ecological outcomes. From a management perspective, anadromous steelhead are generally regarded as a higher conservation priority than resident rainbow trout, even when found within the same watershed. Our results show that anadromous and resident O. mykiss populations may be connected via gene flow, with important ecological consequences. Such eco‐evolutionary processes should be considered when managing recently diverged populations connected by gene flow.

Funder

California Sea Grant, University of California, San Diego

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3