Author:
De Lellis Camillo,Hirsch Jonas,Marchese Andrea,Stuvard Salvatore
Abstract
AbstractWe establish a first general partial regularity theorem for area minimizing currents$${\mathrm{mod}}(p)$$mod(p), for everyp, in any dimension and codimension. More precisely, we prove that the Hausdorff dimension of the interior singular set of anm-dimensional area minimizing current$${\mathrm{mod}}(p)$$mod(p)cannot be larger than$$m-1$$m-1. Additionally, we show that, whenpis odd, the interior singular set is$$(m-1)$$(m-1)-rectifiable with locally finite$$(m-1)$$(m-1)-dimensional measure.
Funder
Università degli Studi di Trento
Publisher
Springer Science and Business Media LLC
Subject
Geometry and Topology,Analysis
Reference30 articles.
1. Some open problems in geometric measure theory and its applications suggested by participants of the 1984 AMS summer institute. In J. E. Brothers, editor, Geometric measure theory and the calculus of variations (Arcata, Calif., 1984), volume 44 of Proc. Sympos. Pure Math., pages 441–464. Amer. Math. Soc., Providence, RI, 1986.
2. William K. Allard. On the first variation of a varifold. Ann. of Math. (2), 95:417–491, 1972.
3. Frederick J. Almgren, Jr. Multi-functions mod $$\nu $$. In Geometric analysis and computer graphics (Berkeley, CA, 1988), volume 17 of Math. Sci. Res. Inst. Publ., pages 1–17. Springer, New York, 1991.
4. Luigi Ambrosio. Metric space valued functions of bounded variation. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 17(3):439–478, 1990.
5. Luigi Ambrosio, Nicola Fusco, and Diego Pallara. Functions of bounded variation and free discontinuity problems. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, 2000.
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献