Every finite graph arises as the singular set of a compact 3‐D calibrated area minimizing surface

Author:

Liu Zhenhua1

Affiliation:

1. Princeton University Princeton New Jersey USA

Abstract

AbstractGiven any (not necessarily connected) combinatorial finite graph and any compact smooth 6‐manifold with the third Betti number , we construct a calibrated 3‐dimensional homologically area minimizing surface on equipped in a smooth metric , so that the singular set of the surface is precisely an embedding of this finite graph. Moreover, the calibration form near the singular set is a smoothly twisted special Lagrangian form. The constructions are based on some unpublished ideas of Professor Camillo De Lellis and Professor Robert Bryant.

Funder

National Science Foundation

Publisher

Wiley

Reference45 articles.

1. World Scientific Monograph Series in Mathematics;Almgren F. J.,2002

2. The homotopy groups of the integral cycle groups

3. R. L.Bryant private communication.

4. SO(n)-Invariant Special Lagrangian Submanifolds of ℂn+1 with Fixed Loci*

5. Two‐dimensional area minimizing integral currents are classical minimal surfaces;Chang S. X.‐D.;J. Amer. Math. Soc.,1988

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3