How Challenging is a Challenge? CEMS: a Challenge Evaluation Module for SLAM Visual Perception

Author:

Zhao XuhuiORCID,Gao ZhiORCID,Li Hao,Ji Hong,Yang Hong,Li Chenyang,Fang Hao,M. Chen Ben

Abstract

AbstractDespite promising SLAM research in both vision and robotics communities, which fundamentally sustains the autonomy of intelligent unmanned systems, visual challenges still threaten its robust operation severely. Existing SLAM methods usually focus on specific challenges and solve the problem with sophisticated enhancement or multi-modal fusion. However, they are basically limited to particular scenes with a non-quantitative understanding and awareness of challenges, resulting in a significant performance decline with poor generalization and(or) redundant computation with inflexible mechanisms. To push the frontier of visual SLAM, we propose a fully computational reliable evaluation module called CEMS (Challenge Evaluation Module for SLAM) for general visual perception based on a clear definition and systematic analysis. It decomposes various challenges into several common aspects and evaluates degradation with corresponding indicators. Extensive experiments demonstrate our feasibility and outperformance. The proposed module has a high consistency of 88.298% compared with annotation ground truth, and a strong correlation of 0.879 compared with SLAM tracking performance. Moreover, we show the prototype SLAM based on CEMS with better performance and the first comprehensive CET (Challenge Evaluation Table) for common SLAM datasets (EuRoC, KITTI, etc.) with objective and fair evaluations of various challenges. We make it available online to benefit the community on our website.

Funder

National Natural Science Foundation of China Major Program

Hubei Province Natural Science Foundation

Hubei Science and Technology Major Project

Publisher

Springer Science and Business Media LLC

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. DynaVIG: Monocular Vision/INS/GNSS Integrated Ego and Object Localization in Dynamic Scenes;2024 IEEE 18th International Conference on Control & Automation (ICCA);2024-06-18

2. A Robust and Efficient Visual-Inertial SLAM for Vision-Degraded Environments;2024 IEEE 18th International Conference on Control & Automation (ICCA);2024-06-18

3. Small Object Detection in Unmanned Aerial Vehicle Images Leveraging Density-Aware Scale Adaptation and Knowledge Distillation;2024 IEEE 18th International Conference on Control & Automation (ICCA);2024-06-18

4. Research on Image Point Cloud Fusion Metrological Evaluation Technology;Proceedings of the 2024 3rd International Symposium on Control Engineering and Robotics;2024-05-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3