On the Optimal Adhesion Control of a Vortex Climbing Robot

Author:

Papadimitriou Andreas,Andrikopoulos GeorgeORCID,Nikolakopoulos George

Abstract

AbstractThis article tackles the challenge of negative pressure adhesion control of a Vortex Robotic (VR) platform, which utilizes a modified Electric Ducted Fan (EDF)-based design for successfully adhering to surfaces of variable curvature. The resulting Vortex Actuation (VA) system is estimated through a switching Autoregressive-Moving-Average with eXternal input (ARMAX) identification, for accurately capturing the throttle to adhesion force relationship throughout its operating range. For safe attachment of the robot on a surface, the critical adhesion is modeled based on the geometrical properties of the robotic platform for providing the required reference forces. Within this work, an explicit controller via the use of a Constraint Finite Time Optimal Control (CFTOC) approach is designed in an offline manner, which results in a lookup table realization that ensures overall system stability in all state transitions. In an effort to further improve the tracking response for arbitrary setup orientations, the adhesion control scheme is extended through a switching EMPC framework. The resulting frameworks are tested through both dynamic simulation and experimental sequences involving: a) adhesion control on a rotating test curved surface and, b) adhesion and locomotion sequences on a water pipe.

Funder

Lulea University of Technology

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Artificial Intelligence,Industrial and Manufacturing Engineering,Mechanical Engineering,Control and Systems Engineering,Software

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Two-Legged Robot for Climbing Vertical Surfaces Based on Pressure-Sensitive Adhesion and Peeling;Lecture Notes in Networks and Systems;2024

2. Design and Experimental Study of Air Cooler Magnetic Adsorption Intelligent Cleaning Robot;2023 6th International Conference on Intelligent Robotics and Control Engineering (IRCE);2023-08-04

3. Research on stability control strategy of adjustable pressure wall-climbing robot based on adsorption identification;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2023-07-03

4. Modeling and Analysis of Magnetic Adhesion Module for Wall-climbing Robot;IEEE Transactions on Instrumentation and Measurement;2022

5. Development of a Lizard-Inspired Wall-Climbing Robot Using Pressure Sensitive Adhesion;IEEE Access;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3