Research on stability control strategy of adjustable pressure wall-climbing robot based on adsorption identification

Author:

Cheng Hao1,Wang Xuejun1

Affiliation:

1. Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming, China

Abstract

In order to solve the problem that it is difficult to accurately model the complex fluid domain in the negative pressure chamber of the robot in the process of wall climbing, and thus cannot quickly and steadily adsorb, a double closed-loop control strategy based on parameter identification and particle swarm optimization is proposed in this paper to improve the speed and stability of the adsorption response of the robot in the process of wall climbing. Firstly, a vacuum negative pressure wall climbing robot with a spring pressure regulating structure is developed, and the critical conditions of the robot’s instability are solved by mechanical analysis. Then, the rigid-flexible coupling model of the whole machine was established based on mass, spring and Maxwell viscoelastic elements. The model parameters of the adsorption system were identified by vacuum adsorption test. Compared with the experimental data, the accuracy of the model was more than 80%. On this basis, PID controller is used to adjust the adsorption response speed of the robot, a double closed-loop stable adsorption control strategy is designed, and the control parameters of the adsorption system are adjusted by using the dynamic weight standard particle swarm optimization algorithm. Finally, simulation and prototype tests show that, the proposed control strategy can shorten the static and dynamic response time of the adsorption system by about 3.5 s and 1.4 s, the flow response time by about 1.15s, the maneuvering performance of the whole system is improved by about 26%, and the parameter overshoot and steady-state error are lower, which provides a theoretical reference for the stability control and engineering application of the wall-climbing robot.

Funder

国家自然科学基金

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3